dy

The equation of a curve is $xy^2 = x^2 + 1$. Find \overline{dx} in terms of x and y, and hence find the coordinates of the stationary points on the curve.

The diagram shows the curve with equation $x^2 + y^3 - 8x - 12y = 4$. At each of the points *P* and *Q* the tangent to the curve is parallel to the *y*-axis. Find the coordinates of *P* and *Q*.

[8]

[7]

3. A curve has equation $(x + y)^2 = xy^2$. Find the gradient of the curve at the point where x = 1.

[7]

4. Given that $y \sin 2x + \frac{1}{x} + y^2 = 5$, find an expression for $\frac{dy}{dx}$ in terms of x and y.

[5]

^{5.} In this question you must show detailed reasoning.

Find the exact values of the *x*-coordinates of the stationary points of the curve $x^3 + y^3 = 3xy + 35$. [9]

2.

[9]

[7]

^{6.} In this question you must show detailed reasoning.

A curve has equation

$$x\sin y + \cos 2y = \frac{5}{2}$$

for $x \ge 0$ and $0 \le y < 2\pi$.

Determine the exact coordinates of each point on the curve at which the tangent to the curve is parallel to the *y*-axis.

7. The equation of a curve is $4\sqrt{y} + x^2y - 8 = 0$. The curve meets the line y = 1 at two points. Find the gradient

of the curve at each of these points.

^{8.} In this question you must show detailed reasoning.

Show that the curve with equation $x^2 - 4xy + 8y^3 - 4 = 0$ has exactly one stationary [10] point.

END OF QUESTION paper

Mark scheme

Questio n	Answer/Indicative content	Marks	Part marks and guidance	
1	For attempt at product rule on xy^2	M1	or changing equation to $y^2 = x + x^{-1}$	
	$\frac{\mathrm{d}}{\mathrm{d}x}\left(y^2\right) = 2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	soi in the differentiating process	
	$\frac{dy}{dx} = \frac{2x - y^2}{2xy}$ or $\frac{1 - x^{-2}}{2y}$	A1	Award <u>B</u> 1 for $(\pm)\frac{1}{2}(x+x^{-1})^{-\frac{1}{2}}(1+$	
	Stationary point \rightarrow (their) $\frac{dy}{dx} = 0$ soi	M1		
	$x^2 = 1$ or $y^2 = 2$ or $y^4 = 4$	A1	Ignore any other values	
	$(1,\sqrt{2}), (1,-\sqrt{2})$	A1,A1	Accept 1.41 or $4^{\frac{1}{4}}$ for $\sqrt{2}$ Examiner's Comments The first part was generally answered well and most obtained the correct expression for though a few equated to 0 at an earlier stage (so losing a simple mark). The derivation of $x^2 = 1$ or $y^4 = 4$ was well done but the final easy hurdle of obtaining the two (and only two) pairs of coordinates left much to be desired.	SR. Award A1 only if extra co-ordinates presented with both correct answers
	Total	7		
2	$3y^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	B1	$_{\rm or} 2x \frac{{\rm d}x}{{\rm d}y}$	if B0B0 M0

$$\begin{vmatrix} 2x - 12 \frac{dy}{dx} - 8 \\ \frac{3y^2}{dx} - 12 \frac{dy}{dx} - 8 \\ \frac{3y^2}{dx} - 12 \frac{dy}{dx} - 12 \frac{dy}{dx} = 8 - 2x \text{ soi} \end{vmatrix}$$

$$\begin{vmatrix} n_1 \\ \frac{2x \frac{dx}{dy}}{dx} - \frac{8 \frac{dx}{dy}}{dy} - \frac{3y^2}{dx} + 12 \\ \frac{1}{3}(-x^2 + 8x + 12y + 4)^{\frac{-2}{3}} \times (-2x) \\ \frac{$$

			dy	Implicit Differentiation
			d <i>x</i> equal to	
			zero and made no further progress. Surprisingly, solving $3y^2 - 12 = 0$ often led to $y = \pm 4$.	
	Total	8		
3	LHS is $k(x + y)(1 + \frac{dy}{dx})$	M1	or $2x + 2y \frac{dy}{dx} + ky + kx \frac{dy}{dx}$ <i>k</i> is any positive integer	some terms may appear on RHS with signs reversed
	<i>k</i> = 2	A1		if M0 in middle scheme, SC1 for three terms out of four completely correct with $k = 2$
	$2y \frac{dy}{dx}$ on RHS from	B1		may appear on LHS with sign reversed
	$y^2 + Kxy \frac{dy}{dx}$ on RHS	M1	Kis any positive integer	NB $K = 2$; may appear on LHS with signs reversed
	obtains a value of y from eg $(1 + y)^2 = 1 \times y^2$ oe	M1	allow even if follows incorrect manipulation	NB <i>y</i> = -0.5
	substitution of $x = 1$ and their y dependent on at least two correct terms seen following differentiation, even if follows subsequent incorrect manipulation	M1	$1 + \frac{dy}{dx} = \frac{1}{4} - \frac{dy}{dx}$	$\int_{\text{or}} \frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2 - 1 - 0.25}{-1 - 2 + 1}$
				$\underset{\text{NB}}{\frac{\mathrm{d}y}{\mathrm{d}x}} = \frac{2x + 2y - y^2}{2xy - 2x - 2y}$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{3}{8}$ oe cao	A1		- 0.375

			Examiner's Comments	Implicit Differentiation
			Very many candidates showed mastery of implicit differentiation, and an overwhelming majority earned the first 4 marks on this question. Many went on successfully to score full marks. However, some weaker candidates set equal to zero and made no further progress, or lost the accuracy mark either because their value of y was incorrect or because their attempt to make dathe subject of the formula went astray.	
			subject of the equation before differentiating. This was nearly always unsuccessful as the crucial branch of the curve was usually ignored.	
	Total	7		<u> </u>
4	$2y\frac{\mathrm{d}y}{\mathrm{d}x}$	B1	from differentiation of y ²	
	$\sin 2x \frac{\mathrm{d}y}{\mathrm{d}x} + 2y \cos 2x$	M1	correct use of Product Rule	allow sign error or one incorrect coefficient
	$\sin 2x \frac{dy}{dx} + 2y \cos 2x - \frac{1}{x^2} + 2y \frac{dy}{dx} = 0$	A1		
	$(\sin 2x + 2y)\frac{dy}{dx} = \frac{1}{x^2} - 2y\cos 2x$ oe	M1	collection of like terms on separate sides, need not be factorised	must be two terms in $\frac{\mathrm{d}y}{\mathrm{d}x}$
	$\left[\frac{\mathrm{d}y}{\mathrm{d}x}\right] = \frac{1 - 2x^2 y \cos 2x}{(\sin 2x + 2y)x^2} \text{ oe isw}$	A1	eg $[\frac{dy}{dx} =]\frac{x^{-2} - 2y\cos 2x}{(\sin 2x + 2y)}$	A0 for eg y Examiner's Comments

PhysicsAndMathsTutor.com

					Implicit Differentiation This question was done very well indeed, with many candidates achieving full marks. A common error was to differentiate the second term as Inx and some candidates made sign or coefficient errors when using the product rule.
	Total	5			
5	DR $3x^{2} + 3y^{2} \frac{dy}{dx}$ $= 3y + 3x \frac{dy}{dx}$	B1(AO1.1) M1(AO3.1a) A1(AO1.1) E1(AO2.1) M1(AO3.1a)	Attempt LHS derivative Attempt product rule on RHS Correct on RHS	Two non-constant terms	
	$\frac{dy}{dx} = 0$ To find the stationary points let $\frac{dy}{dx} = 0$ $y = x^2$ $x^3 + (x^2)^3 = 3x(x^2) + 35$ $x^6 - 2x^3 - 35 = 0$ Let $p = x^3$, then $p^2 - 2p - 35 = 0$ p = 7 or -5 $\Rightarrow x = \sqrt[3]{7} \text{ or } x = -\sqrt[3]{5}$	M1(AO2.1) M1(AO2.1) M1(AO1.1) A1(AO3.2a)	Explicitly set their derivative equal to zero Attempt to solve for their <i>y</i> or their <i>x</i> Substitute to get their	Alternate $x = y^{\frac{1}{2}}$ Alternate $y^{\frac{3}{2}} - 2y^{\frac{3}{2}} - 35 = 0$	

					Implicit Differentiation
		[9]	polynomial in one variable		
			Transform their disguised quadratic Solve their 3 term quadratic For both correct	A0 for decimal answer	
	Total	9			
6	DR $\sin y + x \cos y \frac{dy}{dx} - 2 \sin 2y \frac{dy}{dx} = 0$ $\frac{dy}{dx} = \frac{\sin y}{2\sin 2y - x\cos y}$ $2\sin 2y - x\cos y = 0$	B1(AO1.1a) M1(AO1.1) A1(AO1.1) M1(AO3.1a) M1(AO3.1a)	Correct derivatives of cosy and – 2sin2y Attempt use of product rule for xsiny Obtain correct derivative		
			L	I	\vdash

	$4\sin y\cos y - x\cos y = 0$				Implicit Differentiation
	$\cos y(4\sin y - x) = 0 \text{ so } \cos y = 0 \text{ or } x = 4\sin y$	A1(AO2.1)	Rearrange and use denominator		
	$\cos_{y=0 \text{ gives}}(\frac{7}{2},\frac{1}{2}\pi)$	M1(AO3.1a)	= 0		
	$x = 4\sin y \text{ gives } 4\sin^2 y + \cos^2 y = 2.5$		Use $sin2y = 2sinycosy and$		
	$4\sin^2 y + 1 - 2\sin^2 y = 2.5$	A1(AO3.2a)	allempt solution		
	$\sin y = \pm \frac{1}{2}\sqrt{3}$	A1(AO2.4)	Obtain $(\frac{7}{2}, \frac{1}{2}\pi)$		
	$\sin y = \frac{1}{2}\sqrt{3}$ gives $(2\sqrt{3}, \frac{1}{3}\pi)$ and $(2\sqrt{3}, \frac{2}{3}\pi)$	[9]		Including use of correct identity	
	$\sin y = -\frac{1}{2}\sqrt{3}$ gives $x < 0$, so no valid solutions		Substitute <i>x</i> = 4sin <i>y</i> into original equation and attempt to solve	5	
			Obtain one correct solution	Must discount_	
			Obtain both correct roots	$\sin y = -\frac{1}{2}\sqrt{3}$	
	Total	9			
	$Ay^{-\frac{1}{2}} \times \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	A is a constant		
7	$Bxy + x^2 \frac{\mathrm{d}y}{\mathrm{d}x}$	M1	<i>B</i> is a constant		

			Implicit Differentiation
A1		-2xv	
		$NB \xrightarrow{\gamma} 1$	
B1		$r^{2} + 2v^{2}$	
ы		x + 2y	
M1	both values		
		fuere	
	may follow		
A1	incorrect	$4\sqrt{1+x^2} \times 1-8$	=
	rearrangement		
A1			
171			
[/]		association	
		between point	
B1		and gradient may	
		De evidenced by	
		SUDSTITUTION	
M1			
	use of Product		
A1	Rule		
	Examiner's Comments		
	As in previous years, this topic is	s well understood and there	
	were many very good responses	s to this question. A few	
	slipped up in finding the values of	of x, but most differentiated	
		ay	
	successfully and then rearrange	d to make dx the subject	

			of their equation. A significant minority made a sign error at this point, thus losing the accuracy,marks at the end following substitution of usually correct <i>x</i> values.		Implicit Differentiation
	Total	7			
8	DR $2x - 4y - 4x\frac{dy}{dx} + 24y^2\frac{dy}{dx} = 0$ $\frac{dy}{dx} = 0$ 2x - 4y = 0 $x^2 - 2x^2 - x^2 + 4 = 0$ $x^3 - x^2 - 4 = 0$ f(2) = 0	M1*(AO1.1a) A1(AO1.1) M1d*(AO1.1a) A1(AO1.1) M1(AO1.1a) A1(AO1.1) B1(AO3.1a) M1(AO2.1) A1(AO2.1)	Attempt implicit differentiationObtain correct derivativeEither rearrange and use, or substituteObtain $2x - 4y =$ 0, or equivEliminate x or y from eqn of curveObtain correct cubicIdentify $x = 2$ as root or $(x - 2)$ as	Deal with at least one y term correctly $OR 4y^2 - 8y^2 + 8y^3 - 4 = 0$ $OR 2y^3 - y^2 - 1$ $= 0$ $BC \\ OR f(1) = 0$	
	$(x-2)(x^2+x+2)=0$	E1(AO2.4) [10]	Attempt to	OR($y - 1$)(2 $y^2 + y$	

	$\Delta = -7 < 0$ so quadratic has no real roots, hence just one stationary point		factorise cubic - any valid method	+ 1) = 0 Allow for dividing by root of their cubic	Implicit Differentiation
			Correct quadratic quotient		
			Justify one stationary point	Correct working only	
	Total	10			